您当前的位置: > 详细浏览

Reconfigurable integrated full-dimensional optical lattice generator 后印本

请选择邀稿期刊:
摘要: Optical lattices with periodic potentials have attracted great attention in modern optics and photonics, enabling extensive applications in atomic manipulation, optical trapping, optical communications, imaging, sensing, etc. In the last decade, the generation of optical lattices has been widely investigated by various approaches such as multi-plane-wave interferometer, beam superposition, spatial light modulators, nanophotonic circuits, etc. However, all of the previous state-of-the-art works are restricted to only one or two dimensions of the light field, which cannot fulfill the increasing demand on complex light manipulation. Full-dimensional and dynamic control of the light field, including spatial amplitude, phase and polarization, is quite challenging and indispensable for the generation of sophisticated optical lattices. Here, we propose and demonstrate a reconfigurable integrated full-dimensional optical lattice generator, i.e. a photonic emitting array (PEA) enabling reconfigurable and full-dimensional manipulation of optical lattices, in which 4x4 photonic emitting units (PEUs) with 64 thermo-optic microheaters are densely integrated on a silicon chip. By engineering each PEU precisely with independent and complete control of optical properties of amplitude, phase and polarization, various optical vortex lattices, cylindrical vector beam lattices, and vector vortex beam lattices can be generated and reconfigured in the far field. The demonstrated integrated optical lattice generator paves the way for the miniaturization, full-dimensional control and enhanced flexibility of complex light manipulation.

版本历史

[V1] 2023-02-19 19:58:59 ChinaXiv:202303.01413V1 下载全文
点击下载全文
预览
同行评议状态
待评议
许可声明
metrics指标
  •  点击量701
  •  下载量22
评论
分享