分类: 物理学 >> 普通物理:统计和量子力学,量子信息等 提交时间: 2017-05-02
摘要: In this study, an artificial synapse with a sandwich structure of Ta/ethyl viologen diperchlorate [EV(ClO4)2]/triphenylamine-based polyimide (TPA-PI)/Pt is fabricated directly on a flexible PET substrate and exhibits distinctive history-dependent memristive behaviour, which meets the basic requirements for synapse emulation. Essential synaptic plasticity (including long-term plasticity and short-term plasticity) and some memory and learning behaviours of human beings (including the conversion from short-term memory to long-term memory and the ‘‘learning–forgetting–relearning’’) have been demonstrated in our device. More importantly, the device still exhibits the synaptic performance when the surface strain of the device reaches 0.64% (or, the bending radius reaches 10 mm). Moreover, the device was able to endure 100 bending cycles. Our findings strongly demonstrate that the organic artificial synapse is not only promising for constructing a neuromorphic information storage and processing system, but is also interesting for the realization of wearable neuromorphic computing systems
提交时间: 2017-05-02
摘要: Proton-conducting graphene oxide electrolyte films with very high electric-double-layer capacitance are used as the gate dielectrics for oxide-based neuron transistor fabrication. Paired-pulse facilitation, dendritic integration, and orientation tuning ar
分类: 生物学 >> 生物物理学 提交时间: 2016-05-12
摘要: The fear responses to environmental threats play a fundamental role in survival. Little is known about the neural circuits specifically processing threat-relevant sensory information in the mammalian brain. We identified parvalbumin-positive (PV+) excitatory projection neurons in mouse superior colliculus (SC) as a key neuronal subtype for detecting looming objects and triggering fear responses. These neurons, distributed predominantly in the superficial SC, divergently projected to different brain areas, including the parabigeminal nucleus (PBGN), an intermediate station leading to the amygdala. Activation of the PV+ SC-PBGN pathway triggered fear responses, induced conditioned aversion, and caused depression-related behaviors. Approximately 20% of mice subjected to the fear-conditioning paradigm developed a generalized fear memory.
分类: 生物学 >> 生物物理学 >> 细胞生物学 提交时间: 2016-05-12
摘要: Sensory dendrites innervate peripheral tissues through cell-cell interactions that are poorly understood. The proprioceptive neuron PVD in C. elegans extends regular terminal dendritic branches between muscle and hypodermis. We found that the PVD branch pattern was instructed by adhesion molecule SAX-7/L1CAM, which formed regularly spaced stripes on the hypodermal cell. The regularity of the SAX-7 pattern originated from the repeated and regularly spaced dense body of the sarcomeres in the muscle. The extracellular proteoglycan UNC-52/Perlecan linked the dense body to the hemidesmosome on the hypodermal cells, which in turn instructed the SAX-7 stripes and PVD dendrites. Both UNC-52 and hemidesmosome components exhibited highly regular stripes that interdigitated with the SAX-7 stripe and PVD dendrites, reflecting the striking precision of subcellular patterning between muscle, hypodermis, and dendrites. Hence, the muscular contractile apparatus provides the instructive cues to pattern proprioceptive dendrites.
分类: 生物学 >> 生物物理学 >> 神经科学 提交时间: 2016-05-12
摘要: Much has been debated about whether the neural plasticity mediating perceptual learning takes place at the sensory or decision-making stage in the brain. To investigate this, we trained human subjects in a visual motion direction discrimination task. Behavioral performance and BOLD signals were measured before, immediately after, and two weeks after training. Parallel to subjects' long-lasting behavioral improvement, the neural selectivity in V3A and the effective connectivity from V3A to IPS (intraparietal sulcus, a motion decisionmaking area) exhibited a persistent increase for the trained direction. Moreover, the improvement was well explained by a linear combination of the selectivity and connectivity increases. These findings suggest that the long-term neural mechanisms of motion perceptual learning are implemented by sharpening cortical tuning to trained stimuli at the sensory processing stage, as well as by optimizing the connections between sensory and decision-making areas in the brain. (C) 2015 Elsevier Inc. All rights reserved.
分类: 生物学 >> 生物物理学 >> 神经科学 提交时间: 2016-05-11
摘要: Main ProblemEpilepsy is one of the more common neurological disorders. The medication is often ineffective to the patients suffering from intractable temporal lobe epilepsy (TLE). As their seizures are usually self-terminated, the elucidation of the mechanism underlying endogenous seizure termination will help to find a new strategy for epilepsy treatment. We aim to examine the role of inhibitory interneurons in endogenous seizure termination in TLE patients. MethodsWhole-cell recordings were conducted on inhibitory interneurons in seizure-onset cortices of intractable TLE patients and the temporal lobe cortices of nonseizure individuals. The intrinsic property of the inhibitory interneurons and the strength of their GABAergic synaptic outputs were measured. The quantitative data were introduced into the computer-simulated neuronal networks to figure out a role of these inhibitory units in the seizure termination. ResultsIn addition to functional downregulation, a portion of inhibitory interneurons in seizure-onset cortices were upregulated in encoding the spikes and controlling their postsynaptic neurons. A patch-like upregulation of inhibitory neurons in the local network facilitated seizure termination. The upregulations of both inhibitory neurons and their output synapses synergistically shortened seizure duration, attenuated seizure strength, and terminated seizure propagation. ConclusionAutomatic seizure termination is likely due to the fact that a portion of the inhibitory neurons and synapses are upregulated in the seizure-onset cortices. This mechanism may create novel therapeutic strategies to treat intractable epilepsy, such as the simultaneous upregulation of cortical inhibitory neurons and their output synapses.
分类: 生物学 >> 生物物理学 >> 细胞生物学 提交时间: 2016-05-11
摘要: In Alzheimer's disease (AD), activated microglia invade and surround beta-amyloid plaques, possibly contributing to the aggregation of amyloid beta (A beta), which affect the survival of neurons and lead to memory loss. Phosphodiesterase-5 (PDE-5) inhibitors have recently been shown a potential therapeutic effect on AD. In this study, the effects of yonkenafil (yonk), a novel PDE-5 inhibitor, on cognitive behaviors as well as the pathological features in transgenic AD mice were investigated. Seven-month-old APP/PSI transgenic mice were treated with yonk (2, 6, or 18 mg/kg, intraperitoneal injection (i.p.)) or sildenafil (slid) (6 mg/kg, i.p.) daily for 3 months and then behavioral tests were performed. The results demonstrated that yonk improved nesting-building ability, ameliorated working memory deficits in the Y-maze tasks, and significantly improved learning and memory function in the Morris water maze (MWM) tasks. In addition, yonk reduced the area of A beta plaques, and inhibited over-activation of microglia and astrocytes. Furthermore, yonk increased neurogenesis in the dentate granule brain region of APP/PSI mice, indicated by increased BrdU(+)/NeuN(+) and BrdU(+)/DCX+ cells compared to vehicle-treated transgenic mice. These results suggest that yonk could rescue cognitive deficits by ameliorated amyloid burden through regulating APP processing, inhibited the over-activation of microglia and astrocytes as well as restored neurogenesis. (C) 2015 Elsevier Ireland Ltd. All rights reserved.
分类: 生物学 >> 生物物理学 >> 肿瘤学 提交时间: 2016-05-11
摘要: In addition to D-Glucose, D-Ribose is also abnormally elevated in the urine of type 2 diabetic patients, establishing a positive correlation between the concentration of uric D-Ribose and the severity of diabetes. Intraperitoneal injection of D-Ribose causes memory loss and brain inflammation in mice. To simulate a chronic progression of age-related cognitive impairment, we orally administered D-Ribose by gavage at both a low and high dose to 8 week-old male C57BL/6J mice daily for a total of 6 months, followed by behavioral, histological and biochemical analysis. We found that long-term oral administration of D-Ribose impairs spatial learning and memory, accompanied by anxiety-like behavior. Tau was hyperphosphorylated at AT8, S396, S214 and T181 in the brain. A beta-like deposition was also found in the hippocampus for the high dose group. D-Glucose-gavaged mice did not show significant memory loss and anxiety-like behavior under the same experimental conditions. These results demonstrate that a long-term oral administration of D-Ribose not only induces memory loss with anxiety-like behavior, but also elevates A beta-like deposition and Tau hyperphosphorylation, presenting D-Ribose-gavaged mouse as a model for agerelated cognitive impairment and diabetic encephalopathy.
分类: 生物学 >> 生物物理学 提交时间: 2016-05-11
摘要: Humidity is one of the most important factors that determines the geographical distribution and survival of terrestrial animals. The ability to detect variation in humidity is conserved across many species. Here, we established a novel behavioral assay that revealed the thirsty Drosophila exhibits strong hygrotactic behavior, and it can locate water by detecting humidity gradient. In addition, exposure to high levels of moisture was sufficient to elicit proboscis extension reflex behavior in thirsty flies. Furthermore, we found that the third antennal segment was necessary for hygrotactic behavior in thirsty flies, while arista was required for the avoidance of moist air in hydrated flies. These results indicated that two types of hygroreceptor cells exist in Drosophila: one located in the third antennal segment that mediates hygrotactic behavior in thirst status, and the other located in arista which is responsible for the aversive behavior toward moist air in hydration status. Using a neural silencing screen, we demonstrated that synaptic output from the mushroom body alpha/beta surface and posterior neurons was required for both hygrotactic behavior and moisture-aversive behavior.
分类: 生物学 >> 生物物理学 >> 生物物理、生物化学与分子生物学 提交时间: 2016-05-05
摘要: Mapping the pattern of connectivity between neurons is widely regarded to be critical for understanding the nervous system. GRASP (GFP reconstitution across synaptic partners) has been used as a promising method for mapping neuronal connectivity, but is currently available in the green color only, limiting its potential applications. Here we demonstrate CRASP (CFP reconstitution across synaptic partners), a cyan colored version of GRASP. We validated the system in HEK 293T cells, and generated transgenic Drosophila lines to show that the system could reliably detect neuronal contacts in the brain. Furthermore, we showed that the CRASP signal could be selectively amplified using standard immunohistochemistry methods. The CRASP system adds to the toolkit available to researchers for mapping neuronal connectivity, and substantially expands the potential application of GRASP-like strategies. (C) 2015 Elsevier Inc. All rights reserved.
分类: 生物学 >> 生物物理学 提交时间: 2016-05-05
摘要: Calstabin2, also named FK506 binding protein 12.6 (FKBP12.6), is a subunit of ryanodine receptor subtype 2 (RyR2) macromolecular complex, which is an intracellular calcium channel and abundant in the brain. Previous studies identified a role of leaky neuronal RyR2 in posttraumatic stress disorder (PTSD). However, the functional role of Calstabin2 in the cognitive function remains unclear. Herein, we used a mouse model of genetic deletion of Calstabin2 to investigate the function of Calstabin2 in cognitive dysfunction. We found that Calstabin2 knockout (KO) mice showed significantly reduced performance in Morris Water Maze (MWM), long-term memory (LTM) contextual fear testing, and rotarod test when compared to wild type (WT) littermates. Indeed, genetic deletion of Calstabin2 reduced long-term potentiation (LTP) at the hippocampal CA3-CA1 connection, increased membrane excitability, and induced RyR2 leak. Finally, we demonstrated that the increase in cytoplasmic calcium activated Ca2+ dependent potassium currents and led to neuronal apoptosis in KO hippocampal neurons. Thus, these results suggest that neuronal RyR2 Ca2+ leak due to Calstabin2 deletion contributes to learning deficiency and memory impairment.