分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2019-01-28 合作期刊: 《计算机应用研究》
摘要: 在大数据环境下,K近邻多标签算法(ML-KNN)高时间复杂度的问题显的尤为突出;此外,ML-KNN也没有考虑k个近邻对最终分类结果的影响。针对上述问题进行研究,首先将训练集进行聚类,再为测试集找到一个距离其最近的训练数据簇作为新的训练数据集;然后计算最近邻样本的距离权重,并用该权重描述最近邻和其他近邻对预测结果的影响;最后使用新的目标函数为待测样本分类。通过在图片、Web页面文本数据等数据集上的实验表明,所提算法得到了更好的分类结果,并且大大降低了时间复杂度。
分类: 图书馆学、情报学 >> 情报学 提交时间: 2017-12-05 合作期刊: 《数据分析与知识发现》
摘要: 【目的】利用 LSTM 模型和字嵌入的方法构建分类系统, 提出一种中文图书分类中多标签分类的解决方 案。【方法】引入深度学习算法, 利用字嵌入方法和 LSTM 模型构建分类系统, 对题名、主题词等字段组成的字 符串进行学习以训练模型, 并采用构建多个二元分类器的方法解决多标签分类问题, 选择 3 所高校 5 个类别的书 目数据进行实验。【结果】从整体准确率、各类别精度、召回率、F1 值多个指标进行分析, 本文提出的模型均有 良好表现, 有较强的实际应用价值。【局限】数据仅涉及中图分类法 5 个类别, 考虑的分类粒度较粗等。【结论】 基于 LSTM 模型的中文图书分类系统具有预处理简单、增量学习、可迁移性高等优点, 具备可行性和实用性。