Subjects: Other Disciplines >> Synthetic discipline submitted time 2023-05-08 Cooperative journals: 《中国科学院院刊》
Abstract: Tall wheatgrass (Elytrigia elongata) is a perennial cool-season bunchgrass with high productivity and tolerance to salt and alkali, waterlogging, and drought. Since first introduced into China in 1950s, tall wheatgrass has long been used as a wild parent for distant hybridization with wheat (Triticum aestivum). During 1980s─1990s, a few tall wheatgrass varieties were introduced to China as forage grass, nonetheless, currently they are still not widely cultivated and no variety was certificated. In 2020, Zhensheng Li put forward a proposal to construct “Coastal Grass Belt” on saline and alkaline soils in the Circum-Bohai sea region, which provides an opportunity for the industrialization of tall wheatgrass in China. This paper introduces the background, main characteristics, history and status of tall wheatgrass and put forward suggestions for industrialization of tall wheatgrass in China. In order to promote utilization of tall wheatgrass in China, the authors suggested constructing demonstration models of “Coastal Grass Belt” and demonstration farms for livestock in the “Coastal Grass Belt” targeted area. Leading companies should be fostered to form a complete industrial chain of “leading companies + professional cooperatives/ large growers”. In addition, basic research, breeding, and seed industrialization should be carried out and accelerated. Meantime, policy and funds from government’s support should also be considered. “Coastal Grass Belt” can not only solve the shortage of high-quality forage grass in China, but also establish ecological barrier and protect the ecological environment.
Subjects: Other Disciplines >> Synthetic discipline submitted time 2023-03-28 Cooperative journals: 《中国科学院院刊》
Abstract: Not only the grain rations must be secured absolutely in China, but also the feed grains. However, the limited arable land resource in China determines that grass planting shall not “compete for land with staple food”. Planting high quality salt-tolerant forage grass on the saline wasteland and developing animal husbandry production can not only meet the demand of increasing proportion of animal protein in Chinese diet structure, but more importantly, it can help to solve the problems of insufficient forage planting and import over-dependence. Hence it plays an important role in guaranteeing national food security. Therefore, it is necessary to use modern biological seed industry technology to accelerate the selection and breeding of salt-tolerant and water-resistant grass varieties, build the supporting system of coastal salt-alkali grass high-yield cultivation technology, and develop high-quality forage and crop straw mixed processing and storage technology to achieve the maximum utilization of biomass resources. The construction of “Coastal Grass Belt” will help to build an ecological barrier in the coastal area, and play an important role in keeping the coastal ecosystem healthy and improving the ecosystem service function.
Subjects: Biology >> Ecology submitted time 2018-02-01 Cooperative journals: 《生态学报》
Abstract:千粒重是大麦产量的重要构成因素之一。青藏高原强辐射、低温、干旱的生态环境孕育了现代农业所急需的大麦种质资源,但是迄今为止尚未见到有关青藏高原栽培大麦WTS与环境因子关系的系统性研究报道。为了揭示青藏高原栽培大麦千粒重的空间分布规律,探明不同环境因子对青藏高原栽培大麦千粒重(WTS)积累的影响程度,利用83个样点的地理、气候、土壤因子数据,研究了青藏高原栽培大麦WTS的分布特征。结果表明:(1)在地理水平方向上,青藏高原栽培大麦WTS总体呈现出斑块状交错分布的格局,形成了以西藏曲水、堆龙德庆、白朗、乃东、日喀则、扎囊、贡嘎、加查、达孜、谢通门、拉孜、定日为中心的青藏高原西南部和青海海晏、门源、刚察为中心的青藏高原东北部等2个栽培大麦WTS高值区;(2)在地理垂直方向上,栽培大麦WTS的变化呈现出"N"型分布格局,即在海拔3600.0-3900.0m和4500.0m以上形成2个WTS高值区,这2个海拔区间栽培大麦WTS分别为(49.6815±10.0764)g和(47.9500±0.1732)g;(3)影响栽培大麦WTS的环境因子从大到小的顺序是抽穗-成熟期降水量 > 土壤速效钾含量 > 分蘖-拔节期日照时数 > 抽穗-成熟其平均气温 > 抽穗-成熟期日照时数 > 拔节-抽穗平均气温日较差 > 地理经度。
Subjects: Biology >> Ecology submitted time 2017-11-23 Cooperative journals: 《生态学报》
Abstract:为了揭示不同环境因子对青藏高原栽培大麦籽粒淀粉含量(GSC)积累的影响程度,完善大麦GSC空间分异与环境因子的关系,明确青藏高原不同地区大麦品种GSC的环境效应,利用83个样点的地理、气候、土壤、农艺因子数据,研究了青藏高原栽培大麦GSC的分布特征,结果表明:(1)在地理水平方向上,青藏高原栽培大麦GSC的水平分布总体呈现出斑块状交错分布和南高北低的格局,并形成了以西藏拉孜、隆子、堆龙德庆、曲水、尼木、定日、萨迦、达孜、扎囊、日喀则、墨竹工卡、贡嘎、琼杰为中心的青藏高原中南部和以青海共和、贵德、海晏、同德为中心的青藏高原东北部等2个栽培大麦GSC高值区;(2)在地理垂直方向上,栽培大麦GSC的变化呈现出"S"型分布格局,即在海拔3300.0-3600.0 m以上,随着海拔的升高,栽培大麦GSC逐渐增加,在海拔4200.0 m与4500.0 m之间达到最高值,此后随着海拔的升高略有下降;(3)影响栽培大麦GSC的因子从大到小的顺序是穗密度 > 6月平均气温日较差 > 芒长 > 9月平均气温 > 1月平均气温 > 年日照时数 > ≥0℃积温 > 5月平均气温 > 8月平均气温日较差 > 8月平均气温 > 6月平均气温 > ≥10℃积温 > 6月平均月降水量 > 5月平均月降水量 > 7月平均相对湿度 > 8月平均相对湿度 > 7月平均气温。这一研究结果显示,对栽培大麦GSC影响最大的是基因型,其次是气候因素,土壤因素对GSC的影响不明显。影响栽培大麦GSC的农艺因子主要是穗密度和芒长,气候因子主要是拔节抽穗期的气温日较差和籽粒灌浆成熟期的平均气温,日照和降水的影响相对较小。
Subjects: Biology >> Ecology submitted time 2017-11-10 Cooperative journals: 《生态学报》
Abstract:为了揭示不同环境因子对青藏高原栽培大麦籽粒淀粉含量(GSC)积累的影响程度,完善大麦GSC空间分异与环境因子的关系,明确青藏高原不同地区大麦品种GSC的环境效应,利用83个样点的地理、气候、土壤、农艺因子数据,研究了青藏高原栽培大麦GSC的分布特征,结果表明:(1)在地理水平方向上,青藏高原栽培大麦GSC的水平分布总体呈现出斑块状交错分布和南高北低的格局,并形成了以西藏拉孜、隆子、堆龙德庆、曲水、尼木、定日、萨迦、达孜、扎囊、日喀则、墨竹工卡、贡嘎、琼杰为中心的青藏高原中南部和以青海共和、贵德、海晏、同德为中心的青藏高原东北部等2个栽培大麦GSC高值区;(2)在地理垂直方向上,栽培大麦GSC的变化呈现出"S"型分布格局,即在海拔3300.0-3600.0 m以上,随着海拔的升高,栽培大麦GSC逐渐增加,在海拔4200.0 m与4500.0 m之间达到最高值,此后随着海拔的升高略有下降;(3)影响栽培大麦GSC的因子从大到小的顺序是穗密度 > 6月平均气温日较差 > 芒长 > 9月平均气温 > 1月平均气温 > 年日照时数 > ≥0℃积温 > 5月平均气温 > 8月平均气温日较差 > 8月平均气温 > 6月平均气温 > ≥10℃积温 > 6月平均月降水量 > 5月平均月降水量 > 7月平均相对湿度 > 8月平均相对湿度 > 7月平均气温。这一研究结果显示,对栽培大麦GSC影响最大的是基因型,其次是气候因素,土壤因素对GSC的影响不明显。影响栽培大麦GSC的农艺因子主要是穗密度和芒长,气候因子主要是拔节抽穗期的气温日较差和籽粒灌浆成熟期的平均气温,日照和降水的影响相对较小。
Subjects: Agriculture, Forestry,Livestock & Aquatic Products Science >> Basic Disciplines of Agriculture submitted time 2017-11-06 Cooperative journals: 《中国生态农业学报》
Abstract:本文利用涡度相关技术对青岛农业大学现代农业科技示范园试验站2013—2014 年冬小麦/夏玉米轮作田与大气之间CO2、水汽和能量交换进行测量, 分别对潜热和CO2 通量进行两种密度修正(WPL 修正和Liu修正)并进行对比, 计算了两种密度修正前后冬小麦/夏玉米轮作田的能量闭合度。结果表明: WPL 修正与Liu修正可以提高潜热通量, WPL 修正后夏玉米田潜热通量约提高6%, 冬小麦田约提高2%; Liu 修正后夏玉米田提高不足1%, 冬小麦田提高约2%。因此WPL 修正对于夏玉米田潜热的修正效果明显优于Liu 修正, 而对冬小麦田潜热修正两种方法效果相同。两种修正方法对于CO2 通量具有降低的修正效果, WPL 修正后夏玉米田和冬小麦田CO2 通量分别降低3%和4%; Liu 修正后夏玉米田和冬小麦田CO2 分别降低2%和3%。可以看出,WPL 修正和Liu 修正对CO2 通量修正前后差别非常小(差距均为1%)。通过对青岛地区冬小麦/夏玉米轮作田能量闭合度的分析, 发现密度修正可以提高能量闭合度, 但不同下垫面有不同的修正效果。裸地情况下, WPL修正可以提高能量闭合度约2.53%~9.76%, 夏玉米田为4.05%, 冬小麦田为1.35%; 而Liu 修正对裸地能量闭合度的提高小于2.53%, 对夏玉米田和冬小麦田提高约为1.35%。显然WPL 修正对于能量闭合度的修正幅度大于Liu 修正。能量闭合度大小关系为裸地Ⅰ(夏玉米出苗前)>裸地Ⅱ(冬小麦出苗前)>夏玉米田>冬小麦田。