Классификация: 地球科学 >> 地理学 Время подачи: 2025-07-17 Кооперативные журналы: 《干旱区科学》
Аннотация: The Loess Plateau (LP), one of the most ecologically fragile regions in China, is affected by severe soil erosion and environmental degradation. Despite large-scale ecological restoration efforts made by Chinese government in recent years, the region continues to face significant ecological challenges due to the combined impact of climate change and human activities. In this context, we developed a kernal Remote Sensing Ecological Index (kRSEI) using Moderate Resolution Imaging Spectroradiometer (MODIS) products on the Google Earth Engine (GEE) platform to analyze the spatiotemporal patterns and trends in ecological environmental quality (EEQ) across the LP from 2000 to 2022 and project future trajectories. Then, we applied partial correlation analysis and multivariate regression residual analysis to further quantify the relative contributions of climate change and human activities to EEQ. During the study period, the kRSEI values exhibited significant spatial heterogeneity, with a stepwise degradation pattern in the southeast to northwest across the LP. The maximum (0.51) and minimum (0.46) values of the kRSEI were observed in 2007 and 2021, respectively. Trend analyses revealed a decline in EEQ across the LP. Hurst exponent analysis predicted a trend of weak anti-persistent development in most of the plateau areas in the future. A positive correlation was identified between kRSEI and precipitation, particularly in the central and western regions; although, improvements were limited by a precipitation threshold of 837.66 mm/a. A moderate increase in temperature was shown to potentially benefit the ecological environment within a certain range; however, temperature of –1.00°C–7.95°C often had a negative impact on the ecosystem. Climate change and human activities jointly influenced 65.78% of LP area on EEQ, primarily having a negative impact. In terms of contribution, human activities played a dominant role in driving changes in EEQ across the plateau. These findings provide crucial insights for accurately assessing the ecological state of the LP and suggest the design of future restoration strategies.