qqqqqq
注册 登录
EN | RU | CN
  • 首页
  • 论文提交
  • 论文浏览
  • 论文检索
  • 个人中心
  • 帮助
按提交时间
  • 1
按主题分类
  • 1
按作者
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
按机构
  • 1
  • 1
  • 1
  • 1
  • 1
当前资源共 1条
隐藏摘要 点击量 时间 下载量
  • 1. ChinaXiv:202404.00027
    下载全文

    Mining Security Assessment in an Underground Environment using a Novel Face Recognition Method with Improved Multiscale Neural Network

    分类: 机械工程 >> 机械设计 提交时间: 2024-04-01

    Xinhua Liu Peng Qi Patrick Siarry Dezheng Hua Z Ma Xiaoqiang Guo Orest Kochan Z. Li

    摘要: Overstaffing production in underground coal mining is not convenient for daily management, and incomplete information of coal miners hinders the rescue process of firefighters during mine accidents. To address this safety sustainability issue, a novel face recognition method based on an improved multiscale neural network is proposed in this paper. A new depthwise seperable (DS)-inception block is designed and a joint supervised loss function based on center loss theory is developed to constructe a new multiscale model. The miniers can be recognized in the harsh underground environment during the life rescue. Experimental results show that the accuracy, recall and F1-score indexes of the proposed method for the miner face recognition in the underground mining environment are 97.26%, 94.17% and 95.42%, respectively. Transfer model with joint supervised loss can effectively improve the recognition accuracy by about 0.5~1.5%. In addition, the average recognition accuracy of the proposed face recognition method achieves to 91.34% and the miss detection rate is less than 5% in the dugout tunnel of coal mine.

    同行评议状态:待评议

     点击量 1735  下载量 517  评论 0
友情链接 : ChinaXiv PubScholar 哲学社会科学预印本
  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募预印本评审专家 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备110402500046号
版权所有© 2016 中国科学院文献情报中心