Current Location: > Detailed Browse

Reaction Mechanism of Cu(In, Ga)Se2 Formation During Milling Process of Powder Mixture of Cu2Se, In2Se3 and Ga2Se3 postprint

请选择邀稿期刊:
Abstract: Sputtering targets of CIGS quaternary ceramic were fabricated by hot-press sintering the milled powder mixture of Cu2Se, In2Se3 and Ga2Se3. When the milling time of the powders less than 4 h, the sintered targets delaminated, while the delamination disappeared with the prolonging milling time. Therefore the physico-chemical changes of the powder mixture during the milling process and their influence on the delamination of the targets were investigated. The results indicate that with the progress of the milling process, mechanical alloying (MA) occurred, and chalcopyrite Cu(In, Ga)Se2 (CIGS) formed from Cu2Se, In2Se3 and Ga2Se3; With the increasing milling time, CuInSe2 (CIS) formed on the surface of binary copper selenide firstly and CIGS was subsequently generated due to the inward diffusion of Ga; Thus the original blend powders became a mixture of CIGS and residual Ga2Se3 after milling for 48 h. Since CIGS and Cu2-xSe have a similar crystallographic structure, therefore this epitaxial relation may facilitate the formation of CIGS. The disappearance of Cu-Se binary compound and the formation of CIGS restrained the delamination of the CIGS targets in the sintering process.

Version History

[V1] 2023-03-31 19:56:30 ChinaXiv:202303.10734V1 Download
Download
Preview
License Information
metrics index
  •  Hits1722
  •  Downloads484
Comment
Share