Ваше текущее местоположение: > Подробный обзор

Perfectly Perform Machine Learning Task with Imperfect Optical Hardware Accelerator 后印本

请选择邀稿期刊:
Краткое изложение: Optical architectures have been emerging as an energy-efficient and high-throughput hardware platform to accelerate computationally intensive general matrix-matrix multiplications (GEMMs) in modern machine learning (ML) algorithms. However, the inevitable imperfection and non-uniformity in large-scale optoelectronic devices prevent the scalable deployment of optical architectures, particularly those with innovative nano-devices. Here, we report an optical ML hardware to accelerate GEMM operations based on cascaded spatial light modulators and present a calibration procedure that enables accurate calculations despite the non-uniformity and imperfection in devices and system. We further characterize the hardware calculation accuracy under different configurations of electrical-optical interfaces. Finally, we deploy the developed optical hardware and calibration procedure to perform a ML task of predicting the intersubband plasmon frequency in single-wall carbon nanotubes. The obtained prediction accuracy from the optical hardware agrees well with that obtained using a general purpose electronic graphic process unit.

История версий

[V1] 2023-02-19 19:58:59 ChinaXiv:202303.01853V1 Скачать полный текст
Нажмите, чтобы загрузить полную версию статьи
Осмотр
Состояние экспертной оценки
Будет рассмотрено
Лицензионное заявление
стандарт
  •  Количество сортировки164
  •  Количество загрузок 14
комментарии
делиться с другими