Ваше текущее местоположение: > Подробный обзор

Quantum-enhanced data classification with a variational entangled sensor network 后印本

请选择邀稿期刊:
Краткое изложение: Variational quantum circuits (VQCs) built upon noisy intermediate-scale quantum (NISQ) hardware, in conjunction with classical processing, constitute a promising architecture for quantum simulations, classical optimization, and machine learning. However, the required VQC depth to demonstrate a quantum advantage over classical schemes is beyond the reach of available NISQ devices. Supervised learning assisted by an entangled sensor network (SLAEN) is a distinct paradigm that harnesses VQCs trained by classical machine-learning algorithms to tailor multipartite entanglement shared by sensors for solving practically useful data-processing problems. Here, we report the first experimental demonstration of SLAEN and show an entanglement-enabled reduction in the error probability for classification of multidimensional radio-frequency signals. Our work paves a new route for quantum-enhanced data processing and its applications in the NISQ era.

История версий

[V1] 2023-02-19 19:58:59 ChinaXiv:202303.01062V1 Скачать полный текст
Нажмите, чтобы загрузить полную версию статьи
Осмотр
Состояние экспертной оценки
Будет рассмотрено
Лицензионное заявление
стандарт
  •  Количество сортировки210
  •  Количество загрузок 11
комментарии
делиться с другими